

ASUGNEXIC2016

Revoluciona la Experiencia y descubre lo que la Transformación Digital puede hacer por ti

Revoluciona la Experiencia y descubre lo que la Transformación Digital puede hacer por ti

Markus Dreseler, Hasso Plattner Institute, Germany

HOW SPEED TRANSFORMS YOUR DIGITAL BUSINESS

Introduction

- Hasso Plattner Institute, Potsdam, Germany
- Founded by SAP chairman Hasso Plattner in 1999
- Not a part of SAP this talk is from an HPI perspective

Introduction

- 500 Students, 12 Professors
- Research Group of Prof. Plattner: Enterprise Plattform and Integration Concepts
- In-Memory Data Management
- Tools & Methods for Design and Engineering
- In-Memory Life Sciences

Revoluciona la Experiencia y descubre lo que la Transformación Digital puede hacer por ti

CHAPTER 1: SPEED IS EVERYTHING

The statement that "In the past it took two days to get an answer to a question that now is given in fifteen minutes" means, perhaps, an increase in *operating* efficiency for the system, but does not in itself materially change the cognitive (psychological) behavior of the person getting the information.

Miller, R. B. (1968). Response time in man-computer conversational transactions. Proc. AFIPS Fall Joint Computer Conference Vol. 33, 267-277.

How long is your attention span?

Response Times: The 3 Important Limits

by JAKOB NIELSEN on January 1, 1993

0.1 seconds: feels instantaneously

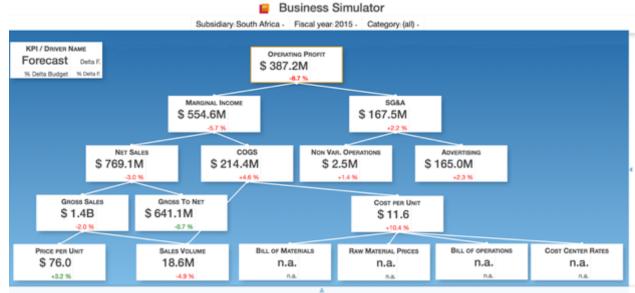
1 second: keeps the **user's flow of thought uninterrupted**

10 seconds: keeps the user's attention

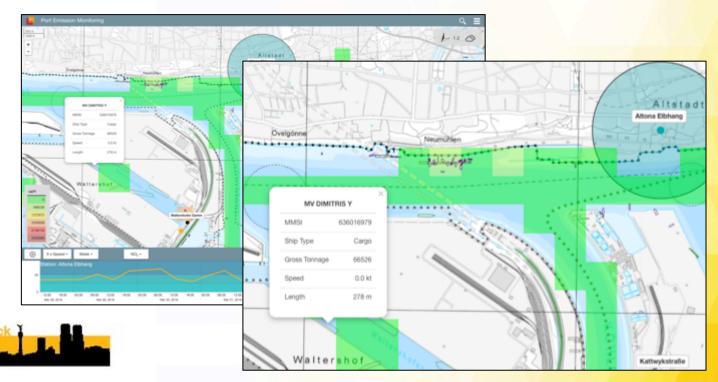
Long wait times makes your users lose focus

 Immediate answers encourage users to explore further and ask questions they would not ask otherwise

- Digital Transformation is not (only) about taking your current approach and making it faster
- Do not take a fast database and only use it to make your applications run faster


Reimagine your applications

Case Study: Business Simulation



Case Study: Environmental Monitoring

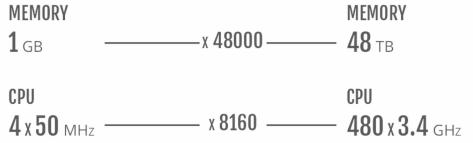
Take Aways from Chapter 1

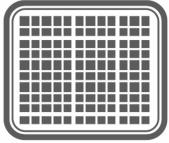
- A fluid user experience needs response times < 10 s, or better < 1 s
- New technologies can help you achieve this goal

But, more importantly, they also enable new, interactive applications

Revoluciona la Experiencia y descubre lo que la Transformación Digital puede hacer por ti

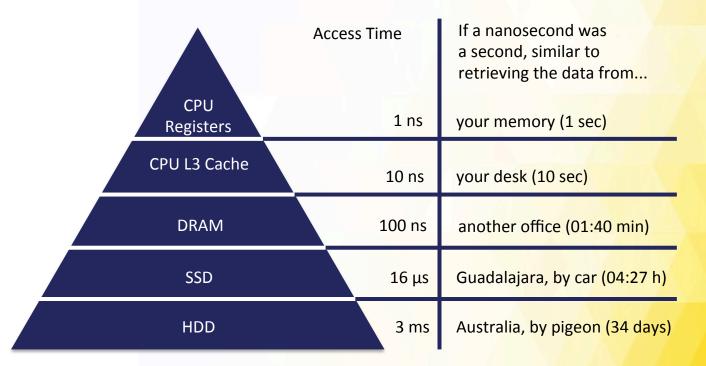
CHAPTER 2: FAST DATABASES




Hardware Developments

TODAY

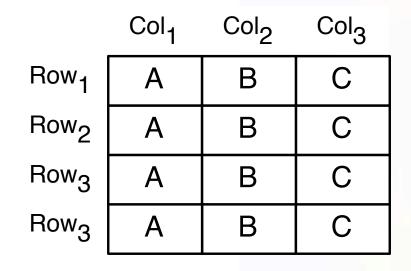
25 YEARS AGO



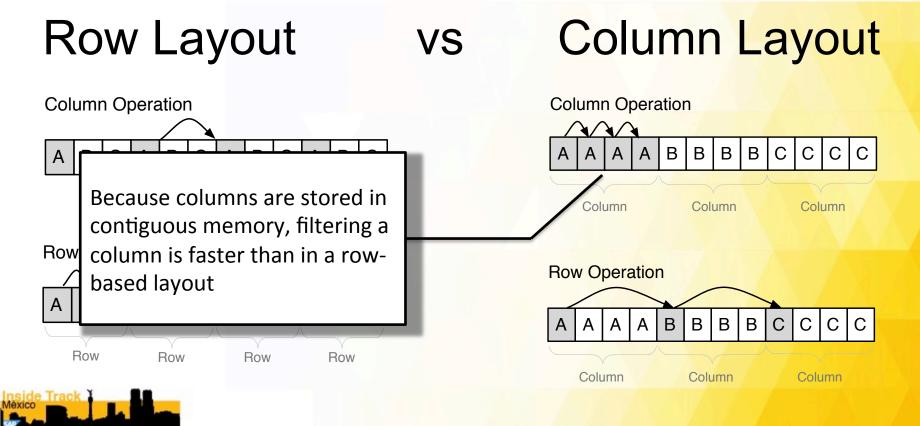
Revoluciona la Experiencia y descubre lo que la Transformación Digital puede hacer por ti

 We said that we have one second to keep the user's flow of thought uninterrupted

 In one second, a single modern processor can process up to 100 GB worth of data

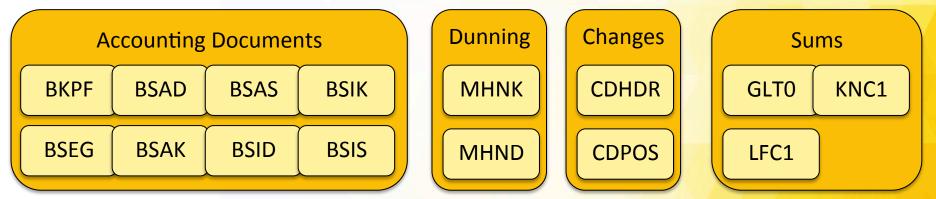

Our database must be able to handle this

Deep Dive: In-Memory Databases


How do we store a table in memory?

Turns out that this decision has major performance implications

Checking Account with Pre-Aggregation


Account #	Business Partne	er Memo	Date	Amount
1		•••		\$ 3714.27
1			6 Jul 2016	\$ -681.28
2			9 Sep 2016	\$ -485.42
1	Date	Balance	3 Oct 2016	\$ 12.55
	Jul	\$ 3032.99	count	Balance
Track X	Sep	\$ -485.42	_	\$ 3045.54
	Oct	\$ 12.55		\$ -485.42

Reducing Complexity

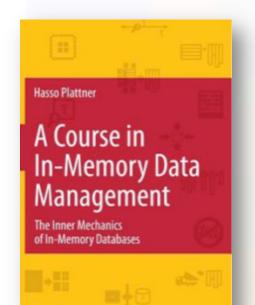
When we aggregate a column in fractions of a second, we can get rid of materialized aggregates and index tables

Advantages of a Simplified System

• Footprint reduction

 Faster transactions, especially for queries we have not thought about

Further Concepts used


- Insert-only
- Dictionary Compression
- Write-optimized storage
- Replication
- Actual/Historical-Storage

Interested in learning more about In-Memory Databases?

Springer

In-Memory Data Management 2015

Prof. Hasso Plattner

7. September 2015 - 2. November 2015
English

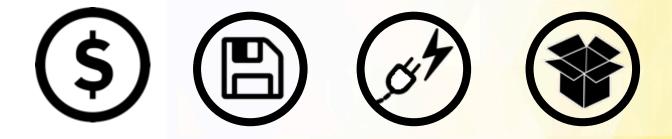
The "In-Memory Data Management" MOOC in 2015 is the fourth iteration of Prof. Hasso Plattner's successful introduction into the inner

Take Aways from Chapter 2

 Database Performance depends on a good understanding of the underlying hardware

 In-Memory Databases are not only faster, but also drive system simplification

Revoluciona la Experiencia y descubre lo que la Transformación Digital puede hacer por ti


CHAPTER 3: OUTLOOK

Main Memory makes all this possible, but it is not perfect

Intel Details 3D XPoint Memory,

Future Products

BY PC MAG ME TEAM AUG. 23, 2015, 8:30 A.M.

30 XPoint" TECHNOLOGY				
Ward (Cache Line) Crosspoint Bruches Infectors along done parties and reducted access to be			NVM Breakthringh Material Advances Comparison such and memory cell manues	
Large Hermony Capec R Dreegenint & Instatore Remonit Special Carl Se clashed in a 30 meteory			Immediately Available High Performance Coll and methodology in 1000 hours data NAME	

storage.

IBM THROWS WEIGHT BEHIND PHASE CHANGE MEMORY

May 17, 2016 Timothy Prickett Morgan

ars Technica UK & Bize IT Tech Science Policy Cars Gaming & Culture Forums

DIGITISING BUSINESS -

Thanks for the memory: How cheap RAM changes computing

In-memory data processing brings huge speed boosts, but the future looks non-volatile.

ADAM BANKS - 17/10/2016, 07:32

- NVM is almost as fast as DRAM, but
 - significantly cheaper,
 - persistent,
 - without energy consumption in standby, and
 - has a higher capacity

Can we build a database without traditional storage?

Can we save money and build bigger databases at the same time?

Offloading and Accelerators

CPUs are great at performing all types of different tasks

- Some applications can be performed faster by specialized hardware
- Think Machine Learning on GPUs or Google's Tensor Processing Unit

Offloading and Accelerators

 We see an increasing movement towards specialized hardware

- Intel's Acquisition of Altera, manufacturer of FPGAs
- CCIX / OpenCAPI / Gen-Z

Offloading and Accelerators

How can we improve database performance and reduce TCO by offloading to certain accelerators?

Take Aways from Chapter 3

- Non-Volatile Memory will disrupt the storage hierarchy
- Accelerators might bring further performance improvements
- Our research helps at understanding these changes and preparing us for the next generation of hardware

The database is there – what new applications can you think of?

Contact: markus.dreseler@hpi.de

